Get krackin’ part 3 - Attack, analyze and reverse

Tools used: gdb, otx

In this tutorial we will be looking at an application called Calories. It uses a very simple
scheme for it’s serials but it should give us some basic understanding of reading,
understanding and reversing a Cocoa application.

Basic overview of our target

When we launch or target app we get presented with the above sheet, asking us to enter a
serial. We are also informed about the demo limit, which is a good thing if we are making a
krack for this app and want to make sure the krack works. But in this tutorial we will be
focusing on how to create valid serials for the app!

o Register Calories a
gE ' Calories is currently in demo mode, the number of added foods is

) limitied. To remove this limitation, please buy Calories.

,

Buy

O Cet your licence key instantly.
(Buy Online \
Register
O Enter your licence key from the registration email.

Licence Key | (' Register)

Demo Limit: 100 foods L Use Demo

Finding what to attack

| often get asked how | find the right place to attack in an app. In one of the previous
tutorials | described three methods of doing this:

1. Looking up actions in .nib-files.
2. Searching otx output for obvious things like “license” and hoping we find the right place
3. Using gdb

Nowadays (on Leopard) there is a problem with the first method since many .nib-files are
compiled and we are unable to open them. And naturally, the second method is also not
always an ideal one since searching thru 3713712 lines of code in your otx output to find

the right spot can be a tedious process that sometimes can take just a few seconds and
sometimes it can take half an hour.

So my advice is to use the third method and this also is the one we will be using for our
target app.

Start by opening up the terminal and attach gdb to our app. Enter some random
characters (in this tutorial I'll be using 123456789). Switch back to the the terminal and
press ctrl-C to interupt the app. Now in the (gdb) prompt enter b stringValue

(gdb) b stringValue
[0] cancel
[1] all

Non-debugging symbols:

[2] -[DOMXPathResult stringValue]

[8] -[NSActionCell stringValue]

[4] -[NSAppleEventDescriptor stringValue]

[5] -[NSButtonCell stringValue]

[6] -[NSCell stringValue]

[7] -[NSControl stringValue]

[8] -[NSLevellndicatorCell stringValue]

[9] -[NSNumber stringValue]

[10] -[NSPanelController stringValue]

[11] -[NSSliderCell stringValue]

[12] -[NSStepperCell stringValue]

[13] -[NSXMLDocument stringValue]

[14] -[NSXMLElement stringValue]

[15] -[NSXMLFidelityNode stringValue]

[16] -[NSXMLNamedFidelityNode stringValue]
[17] -[NSXMLNode stringValue]

[18] -[_NSDatePickerCellSubfield stringValue]

Whoah! A lot of choices there. So how do we know which breakpoint the app will hit when
a stringValue gets taken from the textfield? We could find out by looking at the Cocoa
documentation for textfields, or NSTextfield as they are called in the Cocoa frameworks.

Inherits from NSControl : NSView : NSResponder : NSObject

As we can see NSTextfield inherits from NSControl and one of the suggested stringValue
breakpoints was -[NSControl stringValue. So this is where we will set our breakpoint!

Set the breakpoint and continue execution of the app. Switch back to the app and press
the “Register” button. The app will freeze because our breakpoint was hit.

Back in gdb we will do a backtrace and find out what has been called before our
-[INSControl stringValue] breakpoint was hit.

Breakpoint 1, 0x91209f9c in -[NSControl stringValue] ()

(gdb) bt

#0 0x91209f9c in -[NSControl stringValue] ()

#1 0x00007b9c in -[CLAppController registerApplication:] ()

#2 0x91220eb8 in -[NSApplication sendAction:to:from:] ()

#3 0x91220dec in -[NSControl sendAction:to:] ()

#4 0x91220304 in -[NSCell trackMouse:inRect:ofView:untiiMouseUp:] ()
#5 0x9121fc3c in -[NSButtonCell trackMouse:inRect:ofView:untilMouseUp:] ()
#06 0x9121f578 in -[NSControl mouseDown:] ()

#7 0x9121de3c in -[NSWindow sendEvent] ()

#8 0x911f11e0 in -[NSApplication sendEvent:] ()

#9 0x9115e4b8 in -[NSApplication run] ()

#10 0x9112ee94 in NSApplicationMain ()

#11 0x000020b4 in main ()

Ahal! looks like -[CLAppController registerApplication:] was called before our breakpoint.
This is a function worth examining!

We could start by deleting our breakpoint since we wont be needing it anymore. In gdb
enter: delete 1 (1 is for the breakpoint number, which in our case was 1. If we want to
delete all of our breakpoints we just enter: delete)

Next, we will set a new breakpoint at -[CLAppController registerApplication:] and repeat
the same proceedure again (enter our license key in the textfield, press the “register”
button and watch the app freeze).

Our new breakpoint was hit and this time we will use the disas command in gdb to
disassemble this function to see if we find anything out of interest.

Breakpoint 2, 0x00007b78 in -[CLAppController registerApplication:] ()

(gdb) disas

Dump of assembler code for function -[CLAppController registerApplication:]:
0x00007b64 <-[CLAppController registerApplication:]+0>: mflr r0
0x00007b68 <-[CLAppController registerApplication:]+4>: stw r0,8(r1)
0x00007b6c <-[CLAppController registerApplication:]+8>: stwu r1,-80(r1)
0x00007b70 <-[CLAppController registerApplication:]+12>: stw r29,76(r1)
0x00007b74 <-[CLAppController registerApplication:]+16>: stw r30,72(r1)
0x00007b78 <-[CLAppController registerApplication:]+20>: mr r30,r3
0x00007b7c <-[CLAppController registerApplication:]+24>: lis r2,4
0x00007b80 <-[CLAppController registerApplication:]+28>: lwz r5,28(r30)
0x00007b84 <-[CLAppController registerApplication:]+32>: Iwz r4,-23856(r2)
0x00007b88 <-[CLAppController registerApplication:]+36>: lis r29,4
0x00007b8c <-[CLAppController registerApplication:]+40>: bla Oxfffeff00
0x00007b90 <-[CLAppController registerApplication:]+44>: lwz r4,-24136(r29)
0x00007b94 <-[CLAppController registerApplication:]+48>: Iwz r3,104(r30)
0x00007b98 <-[CLAppController registerApplication:]+52>: bla Oxfffeff00
0x00007b9c <-[CLAppController registerApplication:]+56>: mr r29,r3
0x00007ba0 <-[CLAppController registerApplication:]+60>: bl 0x1cf88
<CLValidateLicenceKey>

0x00007ba4 <-[CLAppController registerApplication:]+64>: clrlwi r2,r3,24
....OUTPUT REMOVED....

Breakpoint 2, 0x000070d7 in -[CLAppController registerApplication:] ()

(gdb) disas

Dump of assembler code for function -[CLAppController registerApplication:]:
0x000070d2 <-[CLAppController registerApplication:]+0>: push %ebp
0x000070d3 <-[CLAppController registerApplication:]+1>: mov %esp,%ebp
0x000070d5 <-[CLAppController registerApplication:]+3>: push %edi
0x000070d6 <-[CLAppController registerApplication:]+4>: push %esi
0x000070d7 <-[CLAppController registerApplication:]+5>: sub $0x30,%esp
0x000070da <-[CLAppController registerApplication:]+8>: mov 0x8(%ebp),%esi
0x000070dd <-[CLAppController registerApplication:]+11>: mov 0x1c(%esi),%eax
0x000070e0 <-[CLAppController registerApplication:]+14>: mov 0x372d0,%ecx
0x000070e6 <-[CLAppController registerApplication:]+20>: mov %eax,0x8(%esp)
0x000070ea <-[CLAppController registerApplication:]+24>: mov %ecx,0x4(%esp)
0x000070ee <-[CLAppController registerApplication:]+28>: mov %esi,(%esp)
0x000070f1 <-[CLAppController registerApplication:]+31>: call 0x3d12f
<dyld_stub_objc_msgSend>

0x000070f6 <-[CLAppController registerApplication:]+36>: mov 0x68(%esi),%eax
0x000070f9 <-[CLAppController registerApplication:]+39>: mov 0x371b8,%ecx
0x000070ff <-[CLAppController registerApplication:]+45>: mov %ecx,0x4(%esp)
0x00007103 <-[CLAppController registerApplication:]+49>: mov %eax,(%esp)
0x00007106 <-[CLAppController registerApplication:]+52>: call 0x3d12f
<dyld_stub_objc_msgSend>

0x0000710b <-[CLAppController registerApplication:]+57>: mov %eax,%edi
0x0000710d <-[CLAppController registerApplication:]+59>: mov %edi,(%esp)
0x00007110 <-[CLAppController registerApplication:]+62>: call Ox1ae44
<CLValidateLicenceKey>

...OUTPUT REMOVED...

The two above gdb outputs shows part of the gdb output on both PPC and Intel sides.
What is intersting here, PPC or Intel doesnt matter, is looking at what calls (to other
functions) are being done in this function. On PPC these are bl and bla. On Intel they are
call. Now there are ofcourse more than just these calls in our output that might be useful to
read and understand as a kracker (I might write a basic assembler tutorial later..)

What is interesting in -[CLAppController registerApplication:] is that CLValidateLicenceKey
that is being called. This looks like the actual place where the license key is checked and
this is where we will have a closer look.

Analyzing CLValidateLicenceKey

Now that we have found a function that the license key appears to be validated in we can
switch to otx and disassemble the app and have a closer look at what goes on in
CLValidateLicence.

Alright, so the above output is the first part (both PPC and Intel) of CLValidateLicence that
we will examine to understand what is going on.

Once again have a look at what the calls to other functions are being made:

« [NSMutableString stringWithCapacity:]

« [uppercaseString:]

« [appendString:]

« [length:]

- [replaceOccurrencesOfString:withString:options:range:]

So what is happening here?

- We create a new NSMutableString - [NSMutableString stringWithCapacity:]

« We make it uppercase - [uppercaseString:]

- We append a string to it (our entered license) - [appendString:]

- We get the length of the string - [length:]

- Last one is a bit tricky...we replace every occurrence of H in our string with 0 (zero) -
[replaceOccurrencesOfString:withString:options:range:] (I have no idea why this is
though :S)

Let’s continue with the next part:

This basically checks if our entered license key contains the characters 0-9 and A-F (ie,
checks that it only contains hexadecimal characters)

This next part is actually related to the previous part (I just split them up so they wouldn’t
take as much space in this document).

Here it checks for any other characters like dashes (“-”) in our entered license key and
removes them. It loops thru the entire length of the serial to check this (thats why it calls
[length])

Here we put our “cleaned” serial in a new
string and compare the length of it to 14
(thats a hexadecimal value which converted

to a decimal value is 20)

Here it takes the first 8 characters of our string, makes it lowercase and adds “BXRE&{37?
GD>XhyBsDUUK=" (all the [appendString:] calls that | removed from the output does this).
This is then sent to something called _CLDigestFromString. By quickly examining this
function in our otx output it appears it is simply used to make an md5 hash out of the string

sent to it.

The first 12 characters from the hash is then compared to the last 12 characters of the
entered license key ([substringTolndex:] and [isEqualToString:] calls). If they match we
have a valid license key!

Reverse
So here is the basic scheme for the app:

1. A 8 character long seed with only uppercase hexadecimal characters is needed.
Example: 1234ABCD
2. We add BXRE&{3?GD>XhyBsDUUK= to the end of our seed.
Example: 1234ABCDBXRE&{3?GD>XhyBsDUUK=
3. We make an md5 hash out of it
Example: 1234ABCDBXRES&{3?GD>XhyBsDUUK= -> 7cf80d726bd936751a46704t40088b27
4. We take the first 12 characters of our hash and add them to our seed
Example: 1234ABCD7CF80D726BD9
5. We have a valid serial! :)

There you have it folks! We have reversed a simple and weak registration scheme by just
examining our output and what different Objective-C calls were made. It’s not always this
easy but | made this tutorial as a starting point before we get our hands dirty and explore

dirty little things like reversing actual assembler code...(in a later tutorial, | promise! ;))

Homework
1. Practice/Learn your C/Objective-C/Java/Perl/AppleScript or whatever language you
prefer -skillz and write the actual keygen! (Easy/Hard)

This tutorial was written by Pushit in November 2008. Feel free to contact me if you have any questions or comments.

STW!

