
Network Intrusion Detection of Third Party Effects

by
Richard Bejtlich, TaoSecurity

richard@bejtlich.net
www.bejtlich.net

v1.0, 26 August 2000

Introduction

 Have you ever mingled in a crowded room during a party? Perhaps during the
course of the evening someone bumped rather suddenly against you, spilling your drink
and making you angry. Turning to confront your “attacker,” you see him raise his hands
to plead forgiveness, saying “She pushed me. Sorry!” Jabbing a thumb towards the
truly guilty party, your assumed assailant continues to thread his way through the
crowd. The guilty woman who started the whole incident cannot be found. You return
to your business and dance the night away.

 This scenario plays out hundreds or thousands of times per day in the world of
network intrusion detection. Unfortunately, the crucial conversation between the first
party (you) and the second party (the owner of the host who “bumps” your network) may
never occur. Furthermore, neither you nor the second party can identify the third party
(the “truly guilty” adversary who began the affair). We intrusion detectors find ourselves
dealing with “third party effects” on a daily basis. We may never be sure if we are
accurately identifying and responding to traffic from attackers or victims. The term “third
party effects” is used to describe network events similar to the crowded party scenario.
The purpose of this paper is to explain the technical characteristics of third party effects
to help intrusion detectors improve their decision making processes. Hopefully, we will
spend more time dancing and less time confronting innocent party-goers!

General Theory

 Third party effects are almost always caused by spoofing. The third party (the
attacker) assumes the identity of the first party (you) and assaults the second party (the
true “victim”). The following diagram explains this situation:

Third, Second, and First Parties

Packets
with source
IPs from your
network

Replies from
victim to your
network

Unknown
Attacker:

Third
Party

Your
Network:

First
Party

Innocent
Victim:
Second
Party

 Why does the attacker assume the identity of the first party? Generally, the first
party wants to conceal herself, which in some cases is crucial to the success of her
attack, or at least to hiding her identity and preserving her freedom. This is true for two
categories of malicious activity: (1) reconnaissance and (2) denial of service. For
reconnaissance, an attacker may gain some cover for her actions by mingling her true
source address among a dozen or more spoofed source addresses. This will confuse
the victim, making him think multiple hosts are conducting coordinated reconnaissance
against his network. For denial of service, attacks which rely upon non-existent source
addresses demand spoofing to succeed. A low-skilled attacker who chooses active
addresses, such as your own, may not succeed in conducting a truly devastating
assault upon a victim. Furthermore, some methods of defense against DoS rely upon
identifying and blocking offensive IPs. Constantly changing, randomly selected
addresses are difficult to defend against. The process by which addresses are selected
is explained in the following sections.

Reconnaissance

 Reconnaissance, or network mapping, is one simple event where spoofed source
addresses can be used against a target. Essentially, the attacker hopes to divert
attention and confuse the victim by hiding her packets amongst those with spoofed
source addresses. This strategy is not without merit. Most intrusion detection
operations centers have trouble properly handling packets from a multitude of source
addresses. Selecting at least four false addresses should be enough to confuse most
intrusion detectors. Given five sources to process, many intrusion detectors will log the
event under the category “multiple sources,” and won’t bother to pursue any of the
apparent offenders. In a time-critical and manning-depleted work environment, many
intrusion detectors will record the event and press on.

 Reconnaissance using false source addresses can be done using the -D (decoy)
option in nmap, for example. The attacker provides the decoy addresses. Nmap’s man
pages caution against selecting hosts which do not exist or are unreachable. An astute
defender could isolate the attacker’s address from decoys if he finds the decoy
addresses are patently false. What happens when the attacker chooses your IP
address as a decoy? We now witness the first example of “third party effects.”

 Reconnaissance-based third party effects are responses by the second party
(the victim of the scanning activity) to the presumed scanner. While the second party
will reply to the third party, he will also reply to your host and any other addresses
chosen as decoys. For TCP-based scans, responses from live victims will appear as
SYN ACK packets for open ports or RST ACK packets for closed ports, assuming the
attacker is conducting some variation of a SYN scan. Non-SYN TCP-based scans,
such as FIN scans, will elicit varying responses. Any scan which sets the ACK bit, such
as an ACK sweep (the so-called “TCP ping”) can not generally be used to find open
ports. Scans with a set ACK bit can be used to locate hosts. Hosts which do not exist
cannot reply, and their upstream router may return ICMP host unreachable messages.
For UDP-based scans, responses from live victims may appear as UDP packets for

open ports or ICMP destination unreachable messages for closed ports. For ICMP-
based scans, responses from live victims will take the form of some sort of ICMP
response or error message. As with TCP-based probes to nonexistent hosts, UDP or
ICMP-based probes to nonexistent hosts may elicit ICMP host unreachable messages
from upstream routers.

 Given the wide variety of possible responses to decoyed source addresses,
innocent owners of those addresses (first parties) can potentially see dozens of packets
of varying natures. This makes the first party intrusion detector’s job very difficult.
Should your address be spoofed as a decoy, you could see all of the replies directed at
your address, apparently “out of the blue” (or ether?) This fact alone causes many
experienced intrusion detectors to cast a suspicious eye when seeing odd packets.
Fortunately, decoy scans do not seem to be as pervasive as one might expect, at least
when compared to the level of spoofing employed in denial of service attacks.

Denial of Service

 Denial of service attacks are among the most annoying network events
imaginable. DoS is typically designed to consume a victim’s bandwidth or computing
resources. Spoofing can be employed in either scenario. Therefore, even though your
network may not be the perpetrator or victim of a DoS event, you may become involved
if the attacker spoofs your addresses.

 Bandwidth consumption attacks can be implemented via two main methods.
First, an attacker using a single source host with superior throughput may overwhelm a
victim hosted on a narrow pipe. Second, an attacker coordinating the actions of multiple
“slaves” or “agents” may overpower a victim through strength in numbers. This scenario
is typically called “distributed denial of service,” or DDoS. Spoofing may be employed in
either case to hide the perpetrator’s or slaves’ identities, but it is not crucial to a
bandwidth consumption attack. Spoofing may also be used to complicate the victim’s
defensive measures. For example, randomly changing source addresses cannot be
easily blocked at the perimeter. Some defensive devices may dynamically block IPs via
automatic updates of router access control lists or firewall rulesets. Unless the
screening device times out older ACL or ruleset entries, it is possible to create an
unworkable ACL or ruleset, throttling throughput more effectively than the DDoS!

 Computing resource consumption attacks are known to much of the networked
world as “SYN floods,” although other variations are possible. Effective SYN floods rely
upon spoofing nonexistent source addresses. While the victim forever waits for an ACK
in response to his SYN ACK, he consumes memory maintaining the SYN_RECEIVED
state. Beyond SYN floods, computing resource consumption attacks can involve
fragmentation, whereby an attacker stretches a victim’s ability to dynamically
reassemble fragmented packets. This technique may use spoofing to hide the
perpetrator’s identity, or to force the victim to devote memory to maintaining multiple
packets requiring reassembly. This activity may appear to the victim as the following
example, where an attacker is attempting to deny service on the victim’s telnet port:

11:46:14.212003 spoofed.ip.one.1053 > flood.victim.com.23:
 S 322286:322286(0) win 8192 <mss 536,nop,nop,sackOK> (DF)
11:46:14.598008 spoofed.ip.one.1054 > flood.victim.com.23:
 S 322286:322286(0) win 8192 <mss 536,nop,nop,sackOK> (DF)
11:46:14.975522 spoofed.ip.one.1055 > flood.victim.com.23:
 S 322286:322286(0) win 8192 <mss 536,nop,nop,sackOK> (DF)
etc... Note that here and in the traces that follow, a small subset of the activity is shown
for the sake of brevity.

A victim may see dozens to hundreds of packets per second, for whatever duration the
attacker chooses. Multiple source IPs can be observed, which may or may not exist.
The victim will generate replies, which appear as the following:

11:46:14.765043 flood.victim.com.23 > spoofed.ip.one.1053:
 S 4137483508:4137483508(0) ack 322287 win 8192 <mss 1460>
11:46:14.891108 flood.victim.com.23 > spoofed.ip.one.1054:
 S 4164828806:4164828806(0) ack 322287 win 8192 <mss 1460>
11:46:15.019029 flood.victim.com.23 > spoofed.ip.one.1055:
 S 4192020032:4192020032(0) ack 322287 win 8192 <mss 1460>
etc...

 In my professional opinion and experience, third party effects caused by SYN
floods and related phenomena generate a large portion of the seemingly inexplicable
traffic observed today. To that end, much of the remainder of this paper is devoted to
explaining the process in detail and providing illustrative network traces.

Third Party SYN Flood Effects

 Third party SYN flood effects, by definition, involve three parties. To recap, they
are:

- Third party: the attacker (assumed to be female in this paper)
- Second party: the victim (assumed to be male in this paper)
- First party: you and your network (assumed to be whatever you are!)

Attacks which do not involve the spoofing of addresses you own are not visible to you.
Occasionally you can post your traces in the Incidents forum at securityfocus.com or on
the SANS GIAC (www.sans.org/giac.htm) and correlate traffic with other intrusion
detectors. Often you will see only a small and confusing subset of a massive event.
Attacks where you are the victim are easy enough to recognize, although identifying the
true perpetrator can be difficult, as this paper describes.

 Now that we have limited this discussion to activity where your addresses are
being spoofed, a question naturally follows: how are your addresses chosen? Three
possibilities exist. First, the attacker deliberately chooses your addresses. She may do

this to “frame” you, causing the victim to assume you are malicious. This may happen
in the corporate world, whereby a saboteur tries to damage relations between business
allies. Second, the attacker may choose addresses randomly; your network may be
chosen by simple misfortune. Commonly used SYN flooders “shaft” and “syn4k” allow
for random selection of source addresses. In fact, chance appears to play a large role
in the third party effects universe, which may not be surprising, given the growth of the
Internet and the millions of users riding the electronic lightning. Third, the attacker may
look for nonexistent hosts, which is a requirement for effective SYN floods. If your hosts
are live, how can your addresses be chosen for an attack?

 In some cases, a SYN flood tool will allow the attacker to select a range of IPs for
the spoofed source, or it will generate its own list. The utility will ping that range, trying
to determine if any hosts exist. If no ICMP echo replies are heard, the SYN flooder
assumes the IPs do not exist and are ideal spoofed sources. If those hosts are
protected by a router or firewall denying ICMP echo requests, they will not respond with
ICMP echo replies. This “flaw” in choosing good spoofable IPs causes a substantial
amount of third party traffic. Essentially, your network becomes a third party to a SYN
flood by virtue of having blocked ICMP echo requests. In other words, by trying to
protect your hosts from network reconnaissance via ICMP, you have created a set of
“spoofable” IPs. When your IPs are chosen by an attacker, you see an immense
volume of traffic you did not solicit.

 Notionally, a SYN flood may appear as either of the following:

In the first case, the traffic the first party (you) will see appears as the following:

11:46:14.765043 flood.victim.com.23 > spoofed.ip.one.1053:
 S 4137483508:4137483508(0) ack 322287 win 8192 <mss 1460>
11:46:14.891108 flood.victim.com.23 > spoofed.ip.one.1054:
 S 4164828806:4164828806(0) ack 322287 win 8192 <mss 1460>
11:46:15.019029 flood.victim.com.23 > spoofed.ip.one.1055:
 S 4192020032:4192020032(0) ack 322287 win 8192 <mss 1460>

etc...

SYN Flood Against Open Port

2. SYN
packets
with
sourceIPs from your
network

3. SYN ACK
packets

Unknown
Attacker Your

Network

Innocent
Victim’s
Port 23

Listening

1. Ping network for
non-responsive,
assumed non-
existent IPs

SYN Flood Against Closed Port

2. SYN
packets
with
sourceIPs from your
network

3. RST ACK
packets

Unknown
Attacker Your

Network

Innocent
Victim’s

Port 68 or 77
Listening

1. Ping network for
non-responsive,
assumed non-
existent IPs

These are the replies shown earlier. Look at them now with the thought that you own
spoofed.ip.one. Without knowing that flood.victim.com is really a victim of a SYN flood,
you could naturally assume that he is performing some sort of activity against you!
Watch out, somebody bumped into you at the party, and it’s not his fault.

In the second case, the traffic the first party (you) will see appears as the following:

20:31:15.794717 victim.isp.net.68 > spoofed.ip.one.29470:
 R 0:0(0) ack 723645348 win 0 (ttl 242, id 40923)
20:31:20.190800 victim.isp.net.68 > spoofed.ip.one.48926:
 R 0:0(0) ack 960212644 win 0 (ttl 242, id 56829)

more of the same follow...
20:31:17.754903 victim.isp.net.77 > spoofed.ip.two.44376:
 R 0:0(0) ack 1861342051 win 0 (ttl 242, id 25377)
20:31:22.054453 victim.isp.net.77 > spoofed.ip.two.13400:
 R 0:0(0) ack 454770019 win 0 (ttl 242, id 40905)

more of the same follow…

Here we assume you own both spoofed.ip.one and spoofed.ip.two. Note the packets
have been reordered for readability. Traffic in the wild can be more difficult to interpret
in its raw format, and sorting by IP address or other values can occasionally be
enlightening.

In the first case, we notice a SYN flood against a listening port, as it responds
with SYN ACK packets. In the second case, it appears as though ports 68 and 77 are
not listening, as they reply with RST ACK packets. Why would anyone bother SYN
flooding a closed port? What’s the point of DoS against a non-active service? The
answer is that many adversaries may attack one, two, or all 65,535 ports when
conducting denial of service. Some inexperienced attackers may assume “more is
better” and believe SYN flooding every port is more effective than a concentrated strike.
There is a second reason why RST ACK packets may be observed by the first party. A
listening port may initially respond to incoming SYN packets with SYN ACK responses.
As the assault progresses, the port may become “congested” and reply with RST ACK
packets until its queue clears. For example, the following pattern was created in a lab
setting, via a SYN flood against an open port 139 tcp (netbios-ssn) on c1instructor.
These packets are the responses generated by the flood victim:

10:31:50.017282 c1instructor.netbios-ssn > 197.121.183.58.1545: S
154146803:154146803(0) ack 674719802 win 8576 <mss 1460> (DF) (ttl 128, id
45009)
10:31:50.027612 c1instructor.netbios-ssn > 94.16.12.187.1455: S
154146814:154146814(0) ack 674719802 win 8576 <mss 1460> (DF) (ttl 128, id
45265)

...now we see a change! ...
10:31:50.407277 c1instructor.netbios-ssn > 20.141.170.225.2034: R 0:0(0) ack
674719802 win 0 (ttl 128, id 52945)
10:31:54.657074 c1instructor.netbios-ssn > 121.111.27.14.1067: R 0:0(0) ack
674719802 win 0 (ttl 128, id 42707)
10:31:54.677318 c1instructor.netbios-ssn > 171.158.197.16.2036: R 0:0(0) ack
674719802 win 0 (ttl 128, id 43219)

...continues, then the port “reopens”...
10:31:59.017093 c1instructor.netbios-ssn > 194.110.96.191.2245: S
154146853:154146853(0) ack 674719802 win 8576 <mss 1460> (DF) (ttl 128, id
31445)
10:31:59.017161 c1instructor.netbios-ssn > 94.16.12.187.1455: S
154146814:154146814(0) ack 674719802 win 8576 <mss 1460> (DF) (ttl 128, id
31701)
10:31:59.017255 c1instructor.netbios-ssn > 144.63.182.189.2424: S
154146834:154146834(0) ack 674719802 win 8576 <mss 1460> (DF) (ttl 128, id
31957)
10:31:59.017768 c1instructor.netbios-ssn > mac-lab3.psychologie.uni-
greifswald.de.1625: S 154146883:154146883(0) ack 674719802 win 8576 <mss
1460> (DF) (ttl 128, id 33237)
10:31:59.697104 c1instructor.netbios-ssn > 174.168.28.139.1695: R 0:0(0) ack
674719802 win 0 (ttl 128, id 50133)
10:31:59.707059 c1instructor.netbios-ssn > 71.64.113.12.1606: R 0:0(0) ack
674719802 win 0 (ttl 128, id 50389)

...this pattern of SYN ACK, then RST ACK, then SYN ACK continues...

 This attack was generated using a tool similar to syn4k, using randomly
generated source IP addresses. Some of the addresses to which c1instructor replies
are clearly forged, such as 94.16.12.187 and 71.64.113.12. (These addresses are
currently reserved by IANA.) Note that one address is shown by its hostname, mac-
lab3.psychologie.uni-greifswald.de. This indicates a live host for which a DNS PTR
record existed; its IP address is 141.53.95.66. If you owned this host, you would see an
unsolicited SYN ACK packet from c1instructor and wonder what was happening. As the
trace represents an edited snapshot of time, you could potentially see hundreds of SYN
ACK and/or RST ACK packets from c1instructor to your mac-lab3.psychologie.uni-
greifswald.de machine, if the SYN flooding tool chose to spoof 141.53.95.66 repeatedly.
In fact, even in this abbreviated snapshot, we see two replies to 94.16.12.187, at
10:31:50.027612 and 10:31:59.017161!

Making Educated Guesses

 At this point, we can see that SYN floods involving spoofed source addresses
offer certain recognizable clues, such as nonexistent source addresses like
94.16.12.187 and 71.64.113.12. The second party (the victim of the attack) can
therefore be certain no one owning those two IP addresses is legitimately at fault. What
about the owner of 141.53.95.66 (mac-lab3.psychologie.uni-greifswald.de)? From his
point of view, as the third party, he only sees the following arrive on his ether-doorstep:

10:31:59.017768 c1instructor.netbios-ssn > mac-lab3.psychologie.uni-
greifswald.de.1625: S 154146883:154146883(0) ack 674719802 win 8576 <mss
1460> (DF) (ttl 128, id 33237)

 Fortunately, there are techniques he can employ to make an educated guess as
to the type of activity he has witnessed. The first may be the least obvious but most
effective: contacting the owner of the offending IP and asking for assistance.

 An example of this occurred during 1999, while I was performing intrusion
detection work. I observed the following pattern, pseudoanonymized to protect the
innocent:

06:20:51.570058 firstclass.server.edu.510 > spoofed.ip.one.7002:
 R 0:0(0) ack 674711610 win 0 (ttl 116, id 48680)
13:55:27.737433 firstclass.server.edu.510 > spoofed.ip.three.6666:
 R 0:0(0) ack 674711610 win 0 (ttl 118, id 54468)
23:30:53.567215 firstclass.server.edu.510 > spoofed.ip.two.32771:
 R 0:0(0) ack 674711610 win 0 (ttl 117, id 25440)

 My organization owned the IPs designated by spoofed.ip.one, .three, and .two. I
was initially puzzled by the timing of the packets, as they were separated by hours. This
could be the result of a wide variety of spoofed sources; perhaps I saw only a few? I
guessed firstclass.server.edu to be a target host. These packets looked like responses,
where port 510 was closed or flooded.

Researching port 510, I found it is the “firstclass” service, registered by SoftArc.
SoftArc sells a product called the FirstClass Intranet Server, which can provide email,
collaboration, and other services. The source IP belonged to a university, and the
hostname included the word “firstclass.” It seemed that if a malicious Internet user
wanted to perform a denial of service against this university, it might make sense to
target port 510 tcp on the school's FirstClass server. Given the presence of RST ACK
packets from port 510 to multiple IPs, it seemed the host’s buffer for port 510 was
flooded and the port was now closed.

I contacted the school and confirmed their FirstClass server had been under a
denial of service attack at the time and date noted in the packets sent to my hosts. The
attacker was SYN flooding ports 68 (bootp) and 510 (firstclass). The
firstclass.server.edu system was not compromised and it was not originating the
packets sent to my hosts. It was an innocent victim, or the second party to a SYN flood
perpetrated by an unknown third party. As the first party, I saw the RST ACK replies
from the second party.

 I employed the “contact the source technique” many other times. For example, I
observed the following traces at a later date that same year:

10:20:52.097570 commercial.web.server.21 > spoofed.ip.one.1485:
 R 0:0(0) ack 674719802 win 0 (ttl 50, id 1034)
10:22:28.994103 commercial.web.server.23 > spoofed.ip.one.1485:
 R 0:0(0) ack 674719802 win 0 (ttl 50, id 38438)
10:25:43.004888 commercial.web.server.53 > spoofed.ip.one.1485:
 R 0:0(0) ack 674719802 win (ttl 50, id 43626)

more of the same follow...
10:20:40.594667 commercial.web.server.21 > spoofed.ip.two.2104:
 R 0:0(0) ack 674719802 win 0 (ttl 45, id 14598)
10:22:17.576229 commercial.web.server.23 > spoofed.ip.two.2104:
 R 0:0(0) ack 674719802 win 0 (ttl 45, id 11298)
10:25:31.402693 commercial.web.server.53 > spoofed.ip.two.2104:
 R 0:0(0) ack 674719802 0 (ttl 45, id 33894)

more of the same follow...

This source IP belonged to a commercial web site. While the three "source"
ports, 21 (ftp), 23 (telnet), and 53 (dns) made little sense as true source ports, they
might be good candidates as targets of a SYN flood. (They could possibly make sense
as source ports if an attacker was trying to evade packet filtering rules, but that’s a story
for another day.) Sure enough, after contacting the web site, the system administrator
told me a hired security consultant had tested the web server with a denial of service
attack at the exact date and time indicated by my logs.

 We have established that contacting the source can be a valuable source of
information. Unfortunately, this technique is not always prudent or productive. If the
source addresses belong to a source with which you would prefer not to have contact,
calling or emailing them is not a good idea. For example, you may be wary of
contacting owners of hosts in “rogue states.” You may not believe the owner of the
apparently offensive host is trustworthy. Furthermore, the owner may not speak your
language, or he may ignore your requests for help.

Beyond contacting the source, two other techniques may be helpful. First, let’s
look at two more traces where SYN ACK packets are sent to IPs you own
(spoofed.ip.one and .two):

05:41:36.772836 major.irc.host.6666 > spoofed.ip.one.1578:
 S 1822395560:1822395560(0) ack 674711610 win 4096 <mss 1460> (DF)
05:41:53.834459 major.irc.host.6666 > spoofed.ip.two.1578:
 S 311457256:311457256(0) ack 674711610 win 4096 <mss 1460> (DF)
05:42:00.765914 major.irc.host.6667 > spoofed.ip.three.1433:
 S 1074583123:1074583123(0) ack 674711610 win 61440 <mss 1460> (DF)

22:25:46.030135 biology.web.com.23 > spoofed.ip.one.2154:
 S 4154715243:4154715243(0) ack 674719802 win 8192 <mss 152>
22:26:24.456103 biology.web.com.23 > spoofed.ip.one.2026:
 S 159261598:159261598(0) ack 674719802 win 8192 <mss 32>
22:29:38.265734 biology.web.com.23 > spoofed.ip.one.1838:
 S 1866996756:1866996756(0) ack 674719802 win 8192 <mss 152>

Now, observe two traces involving RST ACK packets:

12:52:10.879563 auction.this.com.23 > spoofed.ip.one.1985:
 R 0:0(0) ack 674711610 win 0
12:54:37.882708 auction.this.com.23 > spoofed.ip.one.1554:
 R 0:0(0) ack 674711610 win 0
12:55:38.961649 auction.this.com.23 > spoofed.ip.one.1409:
 R 0:0(0) ack 674711610 win 0

22:34:47.629194 van.smack.net.21 > spoofed.ip.two.2031:
 R 0:0(0) ack 674719802 win 0
22:36:01.282720 van.smack.net.21 > spoofed.ip.two.1071:
 R 0:0(0) ack 674719802 win 0
22:36:11.483963 van.smack.net.21 > spoofed.ip.two.2143:
 R 0:0(0) ack 674719802 win 0

 Do you notice anything significant among these packets? Each set offers
packets with repeating ACK sequence numbers, seen in our two “contacting the source
examples”: 674711610 and 674719802. Given the way the three-way handshake
occurs, we can reasonably conclude that SYN packets with 674711609 and 674719801
generated their respective SYN ACK or RST ACK replies. In fact, tools do exist which
generate the expected sequence numbers. A tool called “synk4” creates SYN
674719801 packets, according to DDoS guru David Dittrich, who made this discovery
by analyzing the following section of code:

 #define SEQ 0x28376839 (0x28376839 is decimal 674719801)

According to Dave, “synk4 takes a source address on the command line for outgoing
packets, and if zero, it generates them randomly using this code”:
. . .
 for (i=1;i>0;i++)
 {
 srandom((time(0)+i));
 srcport = getrandom(1, max)+1000;
 for (x=lowport;x<=highport;x++)
 {
 if (urip == 1)
 {
 a = getrandom(0, 255);
 b = getrandom(0, 255);
 c = getrandom(0, 255);
 d = getrandom(0, 255);
 sprintf(junk, "%i.%i.%i.%i", a, b, c, d);
 me_fake = getaddr(junk);
 }
. . .

The source code is here:

http://packetstorm.securify.com/spoof/unix-spoof-code/synk4.zip

SYN packets with SYN 674711609 may be created with a tool called “shaft.” An
analysis can be found here:

 http://packetstorm.securify.com/distributed/shaft_analysis.txt

Interestingly, both tools allow the attacker to select random source IP generation.

 To verify the operation of tools which used specific SYN sequence numbers, I
tested syn4k in a lab environment. I generated the following packets while SYN
flooding the open port 139 tcp on c1instructor:

10:31:49.206938 ppp-125-232.infonie.fr.1276 > c1instructor.netbios-ssn: S
674719801:674719801(0) win 65535 (ttl 30, id 27207)
10:31:49.216946 92.137.210.105.1186 > c1instructor.netbios-ssn: S
674719801:674719801(0) win 65535 (ttl 30, id 23737)
10:31:49.226939 245.33.39.234.1097 > c1instructor.netbios-ssn: S
674719801:674719801(0) win 65535 (ttl 30, id 20266)
10:31:49.236936 142.184.124.107.1007 > c1instructor.netbios-ssn: S
674719801:674719801(0) win 65535 (ttl 30, id 16796)
10:31:49.246998 39.80.209.236.2066 > c1instructor.netbios-ssn: S
674719801:674719801(0) win 65535 (ttl 30, id 13325)
10:31:49.256936 192.231.38.109.1976 > c1instructor.netbios-ssn: S
674719801:674719801(0) win 65535 (ttl 30, id 9855)

 Again, we notice an IP which appears to exist but is chosen randomly by the tool:
ppp-125-232.infonie.fr, a dial-up account in France. More importantly, we do indeed
see SYN packets with 674719801 set as the initial sequence number. How did the
c1instructor host respond?

10:31:49.207761 c1instructor.netbios-ssn > ppp-125-232.infonie.fr.1276:
 S 154145993:154145993(0) ack 674719802 win 8576 <mss 1460> (DF) (ttl 128, id
26577)
10:31:49.217259 c1instructor.netbios-ssn > 92.137.210.105.1186:
 S 154146003:154146003(0) ack 674719802 win 8576 <mss 1460> (DF) (ttl 128, id
26833)
10:31:49.237210 c1instructor.netbios-ssn > 142.184.124.107.1007:
 S 154146023:154146023(0) ack 674719802 win 8576 <mss 1460> (DF) (ttl 128, id
27089)
10:31:49.247279 c1instructor.netbios-ssn > 39.80.209.236.2066:
 S 154146033:154146033(0) ack 674719802 win 8576 <mss 1460> (DF) (ttl 128, id
27345)
10:31:49.257185 c1instructor.netbios-ssn > 192.231.38.109.1976:
 S 154146043:154146043(0) ack 674719802 win 8576 <mss 1460> (DF) (ttl 128, id
27601)

These SYN ACK 674719802 packets match the patterns we observed earlier from
commercial.web.server, biology.web.com, and van.smack.net. How does a closed port
appear? From the second party’s (victim’s) view:

09:36:03.778833 1Cust196.tnt52.dfw5.da.uu.net.1002 > c1instructor.login:
 S 674719801:674719801(0) win 65535
09:36:03.786883 216.187.222.69.2412 > c1instructor.login:
 S 674719801:674719801(0) win 65535
09:36:03.796771 113.83.51.198.2323 > c1instructor.login:
 S 674719801:674719801(0) win 65535
09:36:03.806770 10.234.136.71.1881 > c1instructor.login:
 S 674719801:674719801(0) win 65535
09:36:03.816852 SAINS.sapmed.ac.jp.1792 > c1instructor.login:
 S 674719801:674719801(0) win 65535
09:36:03.826850 60.25.50.73.1702 > c1instructor.login:
 S 674719801:674719801(0) win 65535

From the first party’s (your) view:

09:36:03.779074 c1instructor.login > 1Cust196.tnt52.dfw5.da.uu.net.1002:
 R 0:0(0) ack 674719802 win 0
09:36:03.787107 c1instructor.login > 216.187.222.69.2412:
 R 0:0(0) ack 674719802 win 0
09:36:03.796996 c1instructor.login > 113.83.51.198.2323:
 R 0:0(0) ack 674719802 win 0
09:36:03.806996 c1instructor.login > 10.234.136.71.1881:
 R 0:0(0) ack 674719802 win 0
09:36:03.817074 c1instructor.login > SAINS.sapmed.ac.jp.1792:
 R 0:0(0) ack 674719802 win 0
09:36:03.827073 c1instructor.login > 60.25.50.73.1702:
 R 0:0(0) ack 674719802 win 0

Again, notice the randomly chosen addresses which do seem to exist, namely
1Cust196.tnt52.dfw5.da.uu.net and SAINS.sapmed.ac.jp.

 Unfortunately, this technique of recognizing certain sequence numbers is not
100% foolproof. For example, certain SYN flooding tools do not use specific sequence
numbers. The very first SYN flood example in this paper used random sequence
numbers. Also, a crafty attacker could try to masquerade truly malicious activity directly
against your network by employing these “universally known” sequence numbers. A
cunning adversary could attempt network reconnaissance using SYN ACK 674711610
or RST ACK 674719802 packets to locate hosts through “inverse mapping.” (Since the
ACK bit is set in each case, she could not check for open ports on well-behaved target
TCP/IP stacks.)

Beyond the SYN Flood

Earlier we mentioned the use of an ACK sweep or “TCP ping” to locate hosts.
While most hosts are vulnerable to SYN floods, some TCP/IP stacks can be vulnerable
to “ACK floods.” While an ACK sweep is employed to find live hosts scattered across a
domain, an ACK flood is used to perform a denial of service against a specific host. As
with a SYN flood, an ACK flood may employ random source addresses. Therefore, the
conditions exist to create third party ACK flood effects. The second party (the victim, or
c1instructor) might see the following:

11:48:56.261221 226.245.223.19.2529 > c1instructor.netbios-ssn:
 . ack 1161178473 win 16384 (ttl 255, id 43068)
11:48:56.262008 231.159.128.79.11380 > c1instructor.netbios-ssn:
 . ack 2404935014 win 16384 (ttl 255, id 27789)
11:48:56.262055 53.116.113.78.4239 > c1instructor.netbios-ssn:
 . ack 3891874576 win 16384 (ttl 255, id 51072)
11:48:56.262100 100.85.51.103.17952 > c1instructor.netbios-ssn:
 . ack 1842262121 win 16384 (ttl 255, id 59153)
11:48:56.262145 16.85.242.75.2814 > c1instructor.netbios-ssn:
 . ack 2235884921 win 16384 (ttl 255, id 25130)

What do you notice about these packets? You may see that I enjoy performing
denial of service attacks against instructors’ machines (c1instructor here.) More
importantly, you see packets with only the ACK flag set. Again, random source IPs are
present, some of which clearly could not exist. 100.85.51.103, for example, is owned by
IANA, while 231.159.128.79 is a multicast address and not valid for unicast traffic. How
does the victim respond?

11:48:51.105468 c1instructor.netbios-ns > 192.168.1.2.netbios-ns:
 udp 68 (ttl 128, id 19159)
11:48:51.106415 192.168.1.2 > c1instructor: icmp: 192.168.1.2
 udp port netbios-ns unreachable (DF) (ttl 254, id 19323)

... Where are the responses to the initial packets? ...
11:49:01.044912 c1instructor.netbios-ssn > 203.48.38.105.14083:
 R 2319094109:2319094109(0) win 0 (ttl 128, id 20183)
11:49:10.283963 c1instructor.netbios-ssn > 132.83.95.12.3538:
 R 1104418348:1104418348(0) win 0 (ttl 128, id 20695)
11:49:24.140438 c1instructor.netbios-ssn > 164.251.210.2.4009:
 R 2105212682:2105212682(0) win 0 (ttl 128, id 21207)

First you notice a UDP packet from c1instructor to 192.168.1.2, followed by an ICMP
unreachable message. While these are not directly related to the ACK flood, I included
them to demonstrate that my packet capture utility (TCPDump) was active and
recording traffic. Although the flood commenced at 11:48:56, we do not see a RST
response until 11:49:01. Perhaps this flood was effective against the target, a Windows
box. Nmap confirms the victim’s identity:

Starting nmap V. 2.12 by Fyodor (fyodor@dhp.com, www.insecure.org/nmap/)
Interesting ports on c1instructor (192.168.4.13):
Port State Protocol Service
139 open tcp netbios-ssn

TCP Sequence Prediction: Class=trivial time dependency
 Difficulty=65 (Easy)
Remote operating system guess: Windows NT4 / Win95 / Win98

Nmap run completed -- 1 IP address (1 host up) scanned in 2 seconds

In any event, we see that the proper response to an ACK packet is simply a RST
response -- not a RST ACK. This response is consistent with the requirements set forth
in RFC 793: Transmission Control Protocol.

 From the third party effect point of view, you may see a series of RST packets
from a host which you may initially consider malicious. Indeed, certain tools, such as
“resetter,” can produce RST packets which are designed to kill connections. In this
case, the RST packets from c1instructor were the result of a third party ACK flooding
c1instructor. Although an individual owner would only see response RST packets
destined for his machine, he might be able to imagine the larger picture and realize third
party effects were at work.

 Many other sorts of activities involving spoofing can cause unexpected packets
to arrive at your network’s front door. For example, a malicious third party could
perform an ICMP echo flood against a victim second party. If your IP address is
spoofed, the victim could reply to your addresses. Similarly, if an attacker conducts a
UDP flood and spoofs your addresses, you may see the victim’s replies. Keep in mind
that replies can take the form of ICMP error messages for certain sorts of traffic.

Summary

 The main goal of this paper was to familiarize the reader with reactions and
responses from innocent victims, who may be subject to reconnaissance or denial of
service. If a perpetrator spoofs your address space, you may see unsolicited traffic
from an innocent second party. While it’s tempting to hunt down the woman who
pushed some guy into your space, sometimes it’s best to keep on dancing!

Acknowledgements

 I’d like to thank Karen Frederick for reviewing this paper and making editing
suggestions. I’d also like to thank Dave Dittrich for some astute recognition of
sequence numbers used in DoS tools.

 This paper contains some material and concepts originally published under the
title “Interpreting Network Traffic.” I plan to publish new documents addressing topics
included in that paper but not mentioned here. I will always maintain the most current
version of this paper at bejtlich.net.

